Enhancement of the sensitivity of human colon cancer cells to growth inhibition by acivicin achieved through inhibition of nucleic acid precursor salvage by dipyridamole.
نویسندگان
چکیده
This study was undertaken to determine if salvage of nucleic acid precursors might constitute a mechanism of resistance to acivicin in human colon cancer cells and, if so, to establish whether dipyridamole, an inhibitor of nucleoside and nucleobase transport, can block the salvage process and restore sensitivity to acivicin. Acivicin inhibited the replication of human colon cancer cells (VACO 5) in vitro in a dose- and time-dependent fashion. In addition, marked cell lysis was evident after a 24-hr exposure to acivicin at concentrations greater than 1 microgram/ml. The primary metabolic effect of acivicin was depletion of the cytidine triphosphate and guanosine triphosphate pools. Adenosine triphosphate levels were also reduced, but apparently as a consequence of the guanosine triphosphate depletion. VACO 5 cells exposed to acivicin (3 micrograms/ml) efficiently salvaged low levels (1 micron) of cytidine, guanosine, and guanine and could, therefore, restore the depleted nucleotide pools. The combination of cytidine and guanosine, but not either nucleoside alone, provided significant protection against the growth-inhibitory properties of acivicin. Dipyridamole, at a noncytotoxic concentration (5 microM), blocked repletion of the cytidine triphosphate and guanosine triphosphate pools in cells exposed to acivicin and the nucleic acid precursors. As a result, the growth-inhibitory effects of acivicin were maintained. The salvage of cytidine was particularly sensitive to inhibition by dipyridamole, and no restoration of cytidine triphosphate pools was evident. The cellular uptake of a variety of nucleic acid precursors was differentially sensitive to inhibition by dipyridamole. The 50% inhibitory dose values ranged from 0.01 to 2.5 microM for cytidine and uridine, respectively. The results of this study indicate that, although the replication of VACO 5 cells was inhibited by acivicin, low levels of nucleosides and nucleobases can circumvent the cytotoxicity. Dipyridamole effectively blocked the salvage pathways and restored the sensitivity of the cancer cells to the antiproliferative actions of acivicin.
منابع مشابه
Enhancement of the Sensitivity of Human Colon Cancer Cells to Growth Inhibition by Acivicin Achieved through Inhibition of Nucleic Acid Precursor Salvage by Dipyridamole1
This study was undertaken to determine if salvage of nucleic acid precursors might constitute a mechanism of resistance to acivicin in human colon cancer cells and, if so, to establish whether dipyridamole, an inhibitor of nucleoside and nucleobase transport, can block the salvage process and restore sensitivity to acivicin. Acivicin inhibited the replication of human colon cancer cells (VACO 5...
متن کاملEffect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.
Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...
متن کاملAerial Parts of Peucedanum chenur Have Anti-Cancer Properties through the Induction of Apoptosis and Inhibition of Invasion in Human Colorectal Cancer Cells
Background: The Peucedanum species have many pharmacological effects due to the presence of coumarins, flavonoids, phenolic compounds, and essential fatty acids in these species. In this study, for the first time, the anticancer activity of Peucedanum chenur methanolic extract via the induction of apoptosis and inhibition of invasion in HCT-116 human colon cancer cells was investigated. Methods...
متن کاملApoptosis induction in acute promyelocytic leukemia cells through upregulation of CEBPα by miR-182 blockage
MicroRNAs (miRNAs) involved in regulation of the genes. The CCAAT/enhancer-binding protein-α (CEBPα) is a crucial transcription factor for normal hematopoiesis and cell cycle that frequently disrupted in human acute myeloid leukemia (AML). The miR-182 up-regulation in several malignant diseases such as AML was reported, in the other hand bioinformatics analysis revealed CEBPα targeted by miR-18...
متن کاملEffect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract
Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract Background: Lung cancer is one the leading cause of cancer-related death worldwide, with more than 1.2 million deaths each year. In addition to genetic mutations, epigenetic modif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 44 8 شماره
صفحات -
تاریخ انتشار 1984